Extracellular Matrix Stiffness Regulates Microvascular Stability by Controlling Endothelial Paracrine Signaling to Determine Pericyte Fate

Arterioscler Thromb Vasc Biol. 2023 Oct;43(10):1887-1899. doi: 10.1161/ATVBAHA.123.319119. Epub 2023 Aug 31.

Abstract

Background: The differentiation of pericytes into myofibroblasts causes microvascular degeneration, ECM (extracellular matrix) accumulation, and tissue stiffening, characteristics of fibrotic diseases. It is unclear how pericyte-myofibroblast differentiation is regulated in the microvascular environment. Our previous study established a novel 2-dimensional platform for coculturing microvascular endothelial cells (ECs) and pericytes derived from the same tissue. This study investigated how ECM stiffness regulated microvascular ECs, pericytes, and their interactions.

Methods: Primary microvessels were cultured in the TGM2D medium (tubular microvascular growth medium on 2-dimensional substrates). Stiff ECM was prepared by incubating ECM solution in regular culture dishes for 1 hour followed by PBS wash. Soft ECM with Young modulus of ≈6 kPa was used unless otherwise noted. Bone grafts were prepared from the rat skull. Immunostaining, RNA sequencing, RT-qPCR (real-time quantitative polymerase chain reaction), Western blotting, and knockdown experiments were performed on the cells.

Results: Primary microvascular pericytes differentiated into myofibroblasts (NG2+αSMA+) on stiff ECM, even with the TGFβ (transforming growth factor beta) signaling inhibitor A83-01. Soft ECM and A83-01 cooperatively maintained microvascular stability while inhibiting pericyte-myofibroblast differentiation (NG2+αSMA-/low). We thus defined 2 pericyte subpopulations: primary (NG2+αSMA-/low) and activated (NG2+αSMA+) pericytes. Soft ECM promoted microvascular regeneration and inhibited fibrosis in bone graft transplantation in vivo. As integrins are the major mechanosensor, we performed RT-qPCR screening of integrin family members and found Itgb1 (integrin β1) was the major subunit downregulated by soft ECM and A83-01 treatment. Knocking down Itgb1 suppressed myofibroblast differentiation on stiff ECM. Interestingly, ITGB1 phosphorylation (Y783) was mainly located on microvascular ECs on stiff ECM, which promoted EC secretion of paracrine factors, including CTGF (connective tissue growth factor), to induce pericyte-myofibroblast differentiation. CTGF knockdown or monoclonal antibody treatment partially reduced myofibroblast differentiation, implying the participation of multiple pathways in fibrosis formation.

Conclusions: ECM stiffness and TGFβ signaling cooperatively regulate microvascular stability and pericyte-myofibroblast differentiation. Stiff ECM promotes EC ITGB1 phosphorylation (Y783) and CTGF secretion, which induces pericyte-myofibroblast differentiation.

Keywords: cell differentiation; endothelial cells; fibrosis; myofibroblasts; pericytes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Endothelial Cells / metabolism
  • Extracellular Matrix / metabolism
  • Fibrosis
  • Myofibroblasts / metabolism
  • Paracrine Communication*
  • Pericytes* / metabolism
  • Rats
  • Transforming Growth Factor beta / metabolism

Substances

  • A-83-01
  • Transforming Growth Factor beta