A Rotating Triboelectric Nanogenerator Driven by Bidirectional Swing for Water Wave Energy Harvesting

Small. 2023 Dec;19(52):e2304412. doi: 10.1002/smll.202304412. Epub 2023 Aug 30.

Abstract

Due to the simple installation and convenient maintenance, the floating water wave energy harvesting devices have significant economic advantages. Mass power density is the most important index to evaluate the advancement of floating wave energy harvesting devices. Herein, a self-adaptive rotating triboelectric nanogenerator (SR-TENG) with a compound pendulum and a functional gear-set is provided for wave energy harvesting. First, a compound pendulum structure with a low center of gravity and high moment of inertia is obtained by the geometric design and mechanical study. Besides, compared with the previous triboelectric nanogenerator with one-way clutch, SR-TENG can harvest twice the kinetic energy utilization through the functional gear-set. Importantly, depending on the structure design, the SR-TENG obtains the average mass power density of 45.18 mW kg-1 under low frequency driving conditions, which is about 10 times the reference electromagnetic generator with a similar structure and size. This result shows that the SR-TENG has a significant advantage in small water wave energy harvesting. These findings provide an important example of the floating water wave energy harvesting devices.

Keywords: compound pendulum; mass power density; triboelectric nanogenerators; water wave energy.