Computational Mechanical Analysis of AO 44A1, 44B1, and 44C1 Fractures with Finite Element Modeling: Evaluation of Screw, Plate, and Kirschner Wire Fixation

J Am Podiatr Med Assoc. 2024 Jan-Feb;114(1):22-155. doi: 10.7547/22-155.

Abstract

Background: The aim of this study was to create AO 44A1, 44B1, and 44C1 fractures using finite element analysis to determine the stability of Kirschner wire, intramedullary screw, and plate-screw fixation methods in fracture.

Methods: Using finite element analysis, the postreduction behavior of AO 44A1, 44B1, and 44C1 fractures with Kirschner wire, intramedullary screw, and plate-screw fixation methods was analyzed and compared in terms of displacement and stress.

Results: The lowest amount of displacement was provided with the intramedullary screw method in AO 44A1 and 44B1 fractures and with the 4-mm Kirschner wire method in AO 44C1 fractures. The total displacement of the intramedullary screw system used for fixation in AO 44A1, 44B1, and 44C1 fractures was lower.

Conclusions: According to finite element analysis results, the lowest amount of displacement was obtained with intramedullary screw fixation in AO 44A1 and 44B1 fractures, and 4-mm Kirschner wire fixation was achieved in AO 44C1 fractures.

MeSH terms

  • Biomechanical Phenomena
  • Bone Plates
  • Bone Screws
  • Bone Wires*
  • Finite Element Analysis
  • Fracture Fixation, Internal / methods
  • Fractures, Bone* / diagnostic imaging
  • Fractures, Bone* / surgery
  • Humans