Early transcriptomic host response signatures in the serum of dengue patients provides insights into clinical pathogenesis and disease severity

Sci Rep. 2023 Aug 29;13(1):14170. doi: 10.1038/s41598-023-41205-2.

Abstract

Dengue virus (DENV), known to cause viral infection, belongs to the family Flaviviridae, having four serotypes (DENV1-4) that spreads by the bite of the Aedes aegypti mosquito. India has been suffering from dengue outbreaks annually with widespread epidemics by prevalence of all the four DENV serotypes. The diverse spectrum of clinical manifestations in dengue infection, mild to severe forms, makes the need of timely diagnosis and prompt treatment an essence. The identification of a dengue host response signature in serum can increase the understanding of dengue pathogenesis since most dengue NS1 Ag tests have been developed and evaluated in serum samples. Here, to understand the same, we undertook a dual RNA-sequencing (RNA-Seq) based approach from the serum samples of dengue-infected patients. The results thus yield the early transcriptional signatures that discriminated the high viral reads patients from patients who had low dengue viral reads. We identified a significant upregulation of two sets of genes, key antiviral (IFIT3, RSAD2, SAT1) and vascular dysfunction (TNFS10, CXCL8) related genes in the high viral reads group. Deeper delving of this gene profile revealed a unique two-way response, where the antiviral genes can mediate the disease course to mild, contrarily the increased expression of the other gene set might act as pointers of severe disease course. Further, we explored the hematologic parameters from the complete blood count (CBC), which suggests that lymphocytes (low) and neutrophils (high) might serve as an early predictor of prognosis in dengue infection. Collectively, our findings give insights into the foundation for further investigation of the early host response using the RNA isolated from dengue patients' serum samples and opens the door for careful monitoring of the early clinical and transcriptome profiles for management of the dengue patients.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aedes* / genetics
  • Animals
  • Antiviral Agents
  • Dengue* / genetics
  • Humans
  • Patient Acuity
  • Transcriptome

Substances

  • Antiviral Agents