The induction of ferroptosis by KLF11/NCOA4 axis: the inhibitory role in clear cell renal cell carcinoma

Hum Cell. 2023 Nov;36(6):2162-2178. doi: 10.1007/s13577-023-00973-9. Epub 2023 Aug 29.

Abstract

Ferroptosis is a form of cell death and has great potential application in the treatment of many cancers, including clear cell renal cell carcinoma (ccRCC). Herein, we identified the essential roles of Krüppel-like factor 11 (KLF11) in suppressing the progression of ccRCC. By analyzing mRNA expression data from the Gene Expression Omnibus (GEO) database, we found that KLF11 was a significantly downregulated gene in ccRCC tissues. The results of subsequent functional assays verified that KLF11 played an antiproliferative role in ccRCC cells and xenograft tumors. Furthermore, gene set enrichment analysis indicated that ferroptosis was involved in ccRCC development, and correlation analysis revealed that KLF11 was positively related to ferroptosis drivers. We also found that KLF11 promoted ferroptosis in ccRCC by downregulating the protein expression of ferritin, system xc (-) cystine/glutamate antiporter (xCT), and glutathione peroxidase 4 (GPX4), acting as the inhibitory factors of ferroptosis and increasing the intracellular levels of lipid reactive oxygen species (ROS). As a transcriptional regulator, KLF11 significantly increased the promoter activity of nuclear receptor coactivator 4 (NCOA4), a gene significantly downregulated in ccRCC and whose low expression is associated with poor survival. The characteristics of ccRCC cells caused by KLF11 overexpression were reversed after NCOA4 silencing. In summary, the present study suggests that KLF11 suppresses the progression of ccRCC by increasing NCOA4 transcription. Therefore, the KLF11/NCOA4 axis may serve as a novel therapeutic target for human ccRCC.

Keywords: Cell growth; Clear cell renal cell carcinoma; Ferroptosis; KLF11; NCOA4.