A Dicyanoisoflurone-based Near-infrared Fluorescence Probe for Highly Sensitive Detection of Hg2

J Fluoresc. 2023 Aug 29. doi: 10.1007/s10895-023-03386-x. Online ahead of print.

Abstract

Due to its high toxicity, long durability, easy absorption by aquatic organisms, and significant bioaccumulation, Hg2+ has caused substantial environmental damage and posed serious threats to human health. Therefore, effective detection of Hg2+ is of utmost importance. In this study, a turn-on fluorescent probe based on dicyanoisoflurone was developed for the detection of Hg2+. The probe exhibited near-infrared fluorescence signal at 660 nm upon excitation by 440 nm UV light in a mixture of CH3CN and HEPES buffer (4:1, v/v, 10 mM, pH = 7.5), with selective binding to Hg2+ in a molar ratio of 1:1. This binding event was accompanied by a visible color change from light yellow to orange. By utilizing the enhanced fluorescence signal change, this probe enables highly sensitive analysis and detection of Hg2+ with excellent selectivity (association constant = 1.63 × 104 M- 1), large Stokes shift (220 nm), high sensitivity (detection limit as low as 5.6 nM), short reaction time (30 s), and a physiological pH range of 7.5-9.5. The probe was successfully employed for detecting of Hg2+ in real water and living cells.

Keywords: Cell imaging; Detection; Fluorescent probe; Hg2+; Near-infrared.