Self-Construction of Efficient Interfaces Ensures High-Performance Direct Ammonia Protonic Ceramic Fuel Cells

Adv Mater. 2023 Oct;35(42):e2304957. doi: 10.1002/adma.202304957. Epub 2023 Sep 20.

Abstract

Direct ammonia protonic ceramic fuel cells (PCFCs) are highly efficient energy conversion devices since ammonia as a carbon-neutral hydrogen-rich carrier shows great potential for storage and long-distance transportation when compared with hydrogen fuel. However, traditional Ni-based anodes readily suffer from severe structural destruction and dramatic deactivation after long-time exposure to ammonia. Here a Sr2 Fe1.35 Mo0.45 Cu0.2 O6-δ (SFMC) anode catalytic layer (ACL) painted onto a Ni-BaZr0.1 Ce0.7 Y0.1 Yb0.1 O3- δ (BZCYYb) anode with enhanced catalytic activity and durability toward the direct utilization of ammonia is reported. A tubular Ni-BZCYYb anode-supported cells with the SFMC ACL show excellent peak power densities of 1.77 W cm-2 in wet H2 (3% H2 O) and 1.02 W cm-2 in NH3 at 650 °C. A relatively stable operation of the cells is obtained at 650 °C for 200 h in ammonia fuel. Such achieved improvements in the activity and durability are attributed to the self-constructed interfaces with the phases of NiCu or/and NiFe for efficient NH3 decomposition, resulting in a strong NH3 adsorption strength of the SFMC, as confirmed by NH3 thermal conversion and NH3 -temperature programmed desorption. This research offers a valuable strategy of applying an internal catalytic layer for highly active and durable ammonia PCFCs.

Keywords: ammonia; anode catalytic layers; interfaces; protonic ceramic fuel cells; tubular cells.