Plasmonic coupling-boosted photothermal nanoreactor for efficient solar light-driven photocatalytic water splitting

J Colloid Interface Sci. 2023 Dec 15;652(Pt A):1016-1027. doi: 10.1016/j.jcis.2023.08.133. Epub 2023 Aug 22.

Abstract

Photothermal nanoreactor with rapid charge transfer and improved spectral utilization is a key point in photocatalysis research. Herein, silver sulfide quantum dots (Ag2S QDs) were coating on the surface of porous graphitic carbon nitride nano vesicles (PCNNVs) to form Ag2S/PCNNVs nanoreactors by a simple calcination method for obtaining efficient photothermal-assisted photocatalytic hydrogen (H2) evolution under simulated/real sunlight irradiation. In particularly, the as-prepared optimal 3% Ag2S/PCNNVs sample exhibited the H2 production rate of 34.8 mmol h-1 g-1, which was 3.5 times higher than that of bare PCNNVs. The enhancement of photothermal-assisted activity over the Ag2S/PCNNVs composite system is mainly attributed to the coupling of the photothermal conversion performance of Ag2S QDs and the thermal insulation performance of PCNNVs based on the plasmonic coupling-boosted photothermal nanoreactor. This study presents a promising strategy for the development of high-efficient photothermal-assisted photocatalysts.

Keywords: Nanoreactor; Photocatalytic; Photothermal-assisted; Plasmonic; Water splitting.