Suppression of colon cancer growth by berberine mediated by the intestinal microbiota and the suppression of DNA methyltransferases (DNMTs)

Mol Cell Biochem. 2023 Aug 28. doi: 10.1007/s11010-023-04836-7. Online ahead of print.

Abstract

The purpose of this study was to demonstrate the regulatory effect of berberine (BBR) on the intestinal microbiota and related epigenetics during the inhibition of colon cancer cell growth in vitro and in vivo. We used a nude mouse xenograft model with HT29 colon cancer cells to establish and divide into a model group and BBR group. The mice were treated for four weeks, and HT29 cells in the BBR group were cultured for 48 h. Cetuximab and the DNA transmethylase (DNMT) inhibitor 5-AZA-dC were added to HT29 cells. Tumour volume and weight were measured by hematoxylin-eosin (HE) staining for histopathological observation. Mouse faeces were collected, and the gut microbiota was analysed with 16S rDNA amplicons. The levels of cytokines in the supernatant of HT29 cells were measured by ELISA. A CCK-8 kit was used to examine the proliferation of HT29 cells, and RT‒PCR was used to measure the levels of c-Myc, DNMT1, DNMT3A, and DNMT3B. We found that BBR reduced the growth of colon cancer cells to a certain extent in vitro and in vivo, although the difference was not statistically significant compared with that in the model group. BBR significantly mediated the abundance, composition and metabolic functions of the intestinal microbial flora in mice with colon cancer. The effect of BBR on inflammatory cytokines, including IL-6, FGF, and PDGF, was not obvious, but BBR significantly downregulated IL-10 levels (P < 0.05) and reduced c-Myc, DNMT1, and DNMT3B levels (P < 0.05). Inhibiting DNMTs with 5-AZA-dC significantly suppressed the proliferation of HT29 cells, which was consistent with the effect of BBR. The inhibitory effect of berberine on colon cancer is related not only to the intestinal microbiota and its metabolic functions but also to the regulation of DNMTs.

Keywords: Berberine; Colon cancer; DNA transmethylases; Epigenetics; Intestinal microbiota.