Standardized amino acid digestibility and protein quality in extruded canine diets containing hydrolyzed protein using a precision-fed rooster assay

J Anim Sci. 2023 Jan 3:101:skad289. doi: 10.1093/jas/skad289.

Abstract

Protein hydrolysate has become a choice of alternative protein source in canine diets as it showed greater digestibility, lower allergenic responses, and various functional properties when compared with intact proteins. The objective of the study was to determine the effect of hydrolyzed protein inclusion on amino acid digestibility and protein quality in extruded canine diets when compared with a traditional protein source for adult dogs. Five treatment diets were formulated to have similar compositions except for the main protein source. The control diet was formulated with chicken meal (CM) as the primary protein source. Test hydrolyzed proteins, chicken liver and heart hydrolysate (CLH) and chicken hydrolysate (CH) were used to partially or completely substitute CM. The diets were: CONd: CM (30%) diet; 5%CLHd: 5% CLH with 25% CM diet; CLHd: CLH (30%) diet; 5%CHd: 5% CH with 25% CM diet; CHd: CH (30%) diet. A precision-fed rooster assay was used to determine standardized amino acid digestibility for the ingredients and diets. In addition, Digestible Indispensable Amino Acid Score (DIAAS)-like values were calculated for the protein ingredients. All protein ingredients had higher than 80% of digestibility for all indispensable amino acids with no difference among sources (P > 0.05). From the DIAAS-like values referencing AAFCO nutrient profile for adult dogs, CLH and CH did not have any limiting amino acid; on the other hand, CM has a lower DIAAS-like value (93.3%) than CLH and CH (P < 0.05) with tryptophan being the first-limiting amino acid. The DIAAS-like values were often lower when the amino acid combinations methionine + cysteine and phenylalanine + tyrosine were included in the calculation. When referencing NRC recommended allowances and minimal requirements, methionine was the first-limiting amino acid for all protein sources. Amino acid digestibility was mostly above 80% and comparable among the treatment diets. Regarding the digestible indispensable amino acid concentrations in the diets, all of them met the AAFCO nutrient profile for adult dogs at maintenance. In conclusion, both protein hydrolysates were highly digestible, high-quality protein sources, and a full substitution from CM to protein hydrolysate could result in greater protein quality, according to the DIAAS-like values of the ingredients, when compared with CM in extruded canine diets.

Keywords: amino acid; digestibility; dog; hydrolyzed protein; protein quality.

Plain language summary

Hydrolyzed protein has been more commonly used in the pet food industry recently to increase digestibility, decrease allergenic responses, and for other health benefits (such as anti-inflammation and anti-oxidation) in companion animals. The study was designed to determine the protein quality of two protein hydrolysates for incorporating into dry dog foods. Chicken meal (CM) was chosen to be the control protein source as it is a high-quality protein source and has been widely used in pet foods. The test hydrolyzed proteins were made from chicken liver and heart or mechanically separated chicken. The current study aimed to compare the test hydrolyzed proteins, which are usually highly digestible, with a traditional high-quality protein to examine if the hydrolyzed proteins were comparable with CM or of higher quality. Five treatment diets were formulated with CM and/or hydrolyzed proteins. Cecectomized roosters were used in the assay to determine the amino acid digestibility and protein quality of the ingredients and treatment diets. It was shown that all ingredients and diets were highly digestible. The protein hydrolysates were of higher protein quality that better met the animals’ needs. Conclusively, the test protein hydrolysates are suitable protein sources in canine diets to create high-value and specialty foods.

MeSH terms

  • Amino Acids*
  • Animals
  • Chickens
  • Diet / veterinary
  • Dogs
  • Male
  • Methionine
  • Phenylalanine
  • Protein Hydrolysates*
  • Racemethionine

Substances

  • Protein Hydrolysates
  • Amino Acids
  • Methionine
  • Phenylalanine
  • Racemethionine