Sequence-Responsive Multifunctional Supramolecular Nanomicelles Act on the Regression of TNBC and Its Lung Metastasis via Synergic Pyroptosis-Mediated Immune Activation

Small. 2023 Dec;19(50):e2305101. doi: 10.1002/smll.202305101. Epub 2023 Aug 27.

Abstract

Design of effective nanodrugs to modulate the immunosuppression of tumor microenvironment is a desirable approach to boost the clinical tumor-therapeutic effect. Supramolecular nanomicelles PolyMN-TO-8, which are constructed by self-assembling supramolecular host MTX-MPEG2000, guest NPX-2S, and TO-8 through hydrophobic forces, have excellent stability and responsiveness to carboxylesterase and glutathione in turn. In vivo studies validate that PolyMN-TO-8 enable to trigger pyroptosis-mediated immunogenic cell death under laser, avoiding the occurrence of immune dysregulation simultaneously. This therapeutic mode strengthens dendritic cells' maturation and accelerates the infiltration of CD8+ T cells into tumors through moderate activation of pro-inflammatory factors with elimination of immune-escape, ultimately making the tumor inhibition rate as high as 87.44% via synergistic functions of photodynamic therapy, photothermal therapy, chemotherapy, etc. The loss of immune-escape quickens the infiltration of CD8+ T cells into lungs, and further eschews the generation of tumor nodules in it. Chemotherapy, the release of interferon-γ, and immune memory effect also strengthen the defense against metastasis. The generation of O2 catalyzed by PolyMN-TO-8 under laser is indispensable for tumor metastasis inhibition undoubtedly.

Keywords: immunogenic cell death; lung metastasis; memory effect; pyroptosis; supramolecular nanomicelles.

MeSH terms

  • CD8-Positive T-Lymphocytes
  • Cell Line, Tumor
  • Humans
  • Immunotherapy
  • Lung Neoplasms* / drug therapy
  • Photochemotherapy*
  • Pyroptosis
  • Triple Negative Breast Neoplasms*
  • Tumor Microenvironment