Effects of different biofuels and their mixtures with diesel fuel on diesel engine performance and exhausts

Sci Total Environ. 2023 Dec 10:903:166501. doi: 10.1016/j.scitotenv.2023.166501. Epub 2023 Aug 25.

Abstract

In this study, a compression ignition engine that ran on recycled used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP), and petroleum diesel fuel (PDF) was investigated for its energy, performance, and exhaust emissions. The 20 % by volume RUCO, JC, and PP biofuel mix with PDF is taken. According to the American Society for Testing and Material (ASTM) standard, the blend qualities are evaluated. Viscosity, density, flash point, and heating value have all been tested for the 20 % blend. The outcome indicated that for a 20 % mix, the viscosity, density and flash point were all greater than in the PDF but heat value lower. Because studies have demonstrated that diesel engines can operate on 20 % replacement without any modifications, this study focused on 20 % blend. The engine was tested with loads (Ls) ranging from 0 % to 100 % of its entire capacity while the compression ratios (CRs) was varied. The experimental result demonstrated that the thermal efficiency, as measured by the PDF, was much greater than that of the DRUCO20, DJC20, and DPP20 blends. After the addition of RUCO, JC, and PP to PDF, the temperature of the exhaust gases reduced, and the engine used more gasoline as a result. It was discovered that an engine emissions of hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx) were lower than those of PDF. Even though it produced a greater amount of carbon dioxide (CO2) emissions, the DRUCO20 was superior to both the DCJ20 and the DPP20.

Keywords: Combustion; Diesel engine; Energy analysis; Exergy analysis; Jatropha curcas; Pongamia Pinnata; Waste cooking oil biofuel.