Hybrid Distributed Optical Fiber Sensor for the Multi-Parameter Measurements

Sensors (Basel). 2023 Aug 11;23(16):7116. doi: 10.3390/s23167116.

Abstract

Distributed optical fiber sensors (DOFSs) are a promising technology for their unique advantage of long-distance distributed measurements in industrial applications. In recent years, modern industrial monitoring has called for comprehensive multi-parameter measurements to accurately identify fault events. The hybrid DOFS technology, which combines the Rayleigh, Brillouin, and Raman scattering mechanisms and integrates multiple DOFS systems in a single configuration, has attracted growing attention and has been developed rapidly. Compared to a single DOFS system, the multi-parameter measurements based on hybrid DOFS offer multidimensional valuable information to prevent misjudgments and false alarms. The highly integrated sensing structure enables more efficient and cost-effective monitoring in engineering. This review highlights the latest progress of the hybrid DOFS technology for multi-parameter measurements. The basic principles of the light-scattering-based DOFSs are initially introduced, and then the methods and sensing performances of various techniques are successively described. The challenges and prospects of the hybrid DOFS technology are discussed in the end, aiming to pave the way for a vaster range of applications.

Keywords: Brillouin scattering; Raman scattering; Rayleigh scattering; distributed acoustic sensing; distributed optical fiber sensor; distributed temperature sensing; distributed vibration sensing; multi-parameter measurements; optical time domain reflectometry.

Publication types

  • Review