Outer-Membrane Vesicles of Fusobacterium necrophorum: A Proteomic, Lipidomic, and Functional Characterization

Microorganisms. 2023 Aug 14;11(8):2082. doi: 10.3390/microorganisms11082082.

Abstract

Outer-membrane vesicles (OMVs) are extruded nanostructures shed by Gram-negative bacteria, containing periplasmic contents, and often including virulence factors with immunogenic properties. To assess their potential for use in vaccine development, we purified OMVs from the Fusobacterium necrophorum subspecies necrophorum, an opportunistic necrotic infection-causing pathogen, and characterized these structures using proteomics, lipid-profiling analyses, and cytotoxicity assays. A proteomic analysis of density-gradient-purified F. necrophorum OMVs identified 342 proteins, a large proportion of which were outer-membrane proteins (OMPs), followed by cytoplasmic proteins, based on a subcellular-localization-prediction analysis. The OMPs and toxins were among the proteins with the highest intensity identified, including the 43-kDa-OMP-, OmpA-, and OmpH-family proteins, the cell-surface protein, the FadA adhesin protein, the leukotoxin-LktA-family filamentous adhesin, the N-terminal domain of hemagglutinin, and the OMP transport protein and assembly factor. A Western blot analysis confirmed the presence of several OMPs and toxins in the F. necrophorum OMVs. The lipid-profiling analysis revealed phospholipids, sphingolipids, and acetylcarnitine as the main lipid contents of OMVs. The lactate-dehydrogenase-cytotoxicity assays showed that the OMVs had a high degree of cytotoxicity against a bovine B-lymphocyte cell line (BL-3 cells). Thus, our data suggest the need for further studies to evaluate the ability of OMVs to induce immune responses and assess their vaccine potential in vivo.

Keywords: Fusobacterium necrophorum; cytotoxicity; lipid profiling; outer-membrane proteins (OMPs); outer-membrane vesicles (OMVs); proteomics; toxins.