Chiral Metal Halide Perovskites: Focus on Lead-Free Materials and Structure-Property Correlations

Molecules. 2023 Aug 21;28(16):6166. doi: 10.3390/molecules28166166.

Abstract

Hybrid organic-inorganic perovskites (HOIPs) are promising materials in several fields related to electronics, offering long carrier-diffusion lengths, high absorption coefficients, tunable band gaps, and long spin lifetimes. Recently, chiral perovskites have attracted huge interest thanks to the possibility of further widening the applications of HOIPs. Chiral materials, being intrinsically non-centrosymmetric, display several attractive physicochemical properties, including circular dichroism, circularly polarized photoluminescence, nonlinear optics, ferroelectricity, and spin-related effects. Recent studies have shown that chirality can be transferred from the chiral organic ligands into the inorganic perovskite framework, resulting in materials combining the advantages of both chirality and perovskite superior optoelectronic characteristics. As for HOIPs for photovoltaics, strong interest is currently devoted towards the development of lead-free chiral perovskites to overcome any toxicity issue. While considering the basic and general features of chiral HOIPs, this review mainly focuses on lead-free materials. It highlights the first attempts to understand the correlation between the crystal structure characteristics and the chirality-induced functional properties in lead and lead-free chiral perovskites.

Keywords: chiral materials; metal halide perovskites; optical properties; structure of solids.

Publication types

  • Review

Grants and funding

L.M. acknowledges support from the Ministero dell’Università e della Ricerca (MUR) and the University of Pavia through the program “Dipartimenti di Eccellenza 2023–2027.