Novel Bio-Based Materials: From Castor Oil to Epoxy Resins for Engineering Applications

Materials (Basel). 2023 Aug 16;16(16):5649. doi: 10.3390/ma16165649.

Abstract

The paper presents the synthesis and thermal behavior of novel epoxy resins prepared from epoxidized castor oil in the presence of or without trimethylolpropane triglycidyl ether (TMP) crosslinked with 3-hexahydro-4-methylphtalic anhydride (MHHPA) and their comparison with a petroleum-based epoxy resin (MHHPA and TMP). Epoxidized castor oil (ECO) was obtained via in situ epoxidation of castor oil with peroxyacetic acid. The chemical structures of castor oil (CO), ECO, and epoxy matrix were confirmed using FT-IR and 1H-NMR spectroscopy. The morphological and thermal behavior of the resulting products have been investigated. Compared to petroleum-based resins, castor oil-based ones have a lower Tg. Anyway, the introduction of TMP increases the Tg of the resins containing ECO. The morphological behavior is not significantly influenced by using ECO or by adding TMP in the synthesis of resins. The dielectric properties of epoxy resins have been analyzed as a function of frequency (1 kHz-1 MHz) and temperature (-50 to 200 °C). The water absorption test showed that as Tg increased, the percent mass of water ingress decreased.

Keywords: castor oil; epoxy resin; thermal characterization; vegetable oil.

Grants and funding

This research received no external funding.