The Effect of Synbiotic Supplementation on Uremic Toxins, Oxidative Stress, and Inflammation in Hemodialysis Patients-Results of an Uncontrolled Prospective Single-Arm Study

Medicina (Kaunas). 2023 Jul 28;59(8):1383. doi: 10.3390/medicina59081383.

Abstract

Introduction: Numerous studies to date have shown that the development of dysbiotic gut microbiota is a characteristic finding in chronic kidney disease (CKD). A number of uremic toxins progressively accumulate in the course of CKD, some of them generated by the intestinal microbiome, such as indoxyl sulfate (IS) and p-cresyl sulfate (p-CS). They are found to be involved in the pathogenesis of certain complications of uremic syndrome, including low-grade chronic inflammation and oxidative stress. The aim of the present study is to research the serum concentration of IS and p-CS in end stage renal disease (ESRD) patients undergoing conventional hemodialysis, as well as to study the possibilities of influencing some markers of inflammation and oxidative stress after taking a synbiotic. Materials and Methods: Thirty patients with end-stage renal disease (ESRD) undergoing hemodialysis treatment who were taking a synbiotic in the form of Lactobacillus acidophilus La-14 2 × 1011 (CFU)/g and prebiotic fructooligosaccharides were included in the study. Serum levels of total IS, total p-CS, Interleukin-6 (IL-6), and Malondialdehyde (MDA) were measured at baseline and after 8 weeks. Results. The baseline values of the four investigated indicators in the patients were significantly higher-p-CS (29.26 ± 58.32 pg/mL), IS (212.89 ± 208.59 ng/mL), IL-6 (13.84 ± 2.02 pg/mL), and MDA (1430.33 ± 583.42 pg/mL), compared to the results obtained after 8 weeks of intake, as we found a significant decrease in the parameters compared to the baseline-p-CS (6.40 ± 0.79 pg/mL, p = 0.041), IS (47.08 ± 3.24 ng/mL, p < 0.001), IL-6 (9.14 ± 1.67 pg/mL, p < 0.001), and MDA (1003.47 ± 518.37 pg/mL, p < 0.001). Conclusions: The current study found that the restoration of the intestinal microbiota in patients with CKD significantly decreases the level of certain uremic toxins. It is likely that this favorably affects certain aspects of CKD, such as persistent low-grade inflammation and oxidative stress.

Keywords: chronic kidney disease; hemodialysis; indoxyl sulfate; interleukin-6; malondialdehyde; p-cresyl sulfate; synbiotic.

MeSH terms

  • Humans
  • Indican
  • Inflammation
  • Interleukin-6
  • Kidney Failure, Chronic* / therapy
  • Oxidative Stress
  • Prospective Studies
  • Renal Dialysis / adverse effects
  • Renal Insufficiency, Chronic*
  • Synbiotics*
  • Uremic Toxins

Substances

  • Uremic Toxins
  • Interleukin-6
  • Indican