Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate

Int J Mol Sci. 2023 Aug 19;24(16):12971. doi: 10.3390/ijms241612971.

Abstract

Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates in various plant species in response to environmental stresses and has significant potential as a bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an important role in the protective mechanism. The hydration and aggregation properties of GB have not yet been studied in detail at the atomistic level. In this work, noncovalent interactions in the GB dimer and its complexes with water and crystalline monohydrate are studied. Depending on the object, periodic and non-periodic DFT calculations are used. Particular attention is paid to the metric parameters and enthalpies of intermolecular hydrogen bonds. The identification of noncovalent interactions is carried out by means of the Bader analysis of periodic or non-periodic electron density. The enthalpy of hydrogen bonds is estimated using the Rosenberg formula (PCCP 2 (2000) 2699). The specific proton donor properties of glycine betaine are due to its ability to form intermolecular C-H∙∙∙O bonds with the oxygen atom of a water molecule or the carboxylate group of a neighboring GB. The enthalpy of these bonds can be significantly greater than 10 kJ/mol. The water molecule that forms a hydrogen bond with the carboxylate group of GB also interacts with its CH groups through lone pairs of electrons. The C-H∙∙∙O bonds contribute up to 40% of the total entropy of the GB-water interaction, which is about 45 kJ/mol. The possibility of identifying C-H∙∙∙O bonds by the proton nuclear magnetic resonance method is discussed.

Keywords: 1H chemical shifts; C–H stretching vibrations; intermolecular H-bonds; intra- and intermolecular interactions; trimethylglycine.

MeSH terms

  • Betaine*
  • Carboxylic Acids
  • Entropy
  • Humans
  • Polymers
  • Protons*
  • Tissue Donors
  • Water

Substances

  • Betaine
  • Protons
  • Carboxylic Acids
  • Polymers
  • Water

Grants and funding

This research received no external funding.