Characterizing the Spatio-Temporal Variations of Urban Growth with Multifractal Spectra

Entropy (Basel). 2023 Jul 27;25(8):1126. doi: 10.3390/e25081126.

Abstract

Urban morphology exhibits fractal characteristics, which can be described by multifractal scaling. Multifractal parameters under positive moment orders primarily capture information about central areas characterized by relatively stable growth, while those under negative moment orders mainly reflect information about marginal areas that experience more active growth. However, effectively utilizing multifractal spectra to uncover the spatio-temporal variations of urban growth remains a challenge. To addresses this issue, this paper proposes a multifractal measurement by combining theoretical principles and empirical analysis. To capture the difference between growth stability in central areas and growth activity in marginal areas, an index based on generalized correlation dimension Dq is defined. This index takes the growth rate of Dq at extreme negative moment order as the numerator and that at extreme positive moment order as the denominator. During the stable stage of urban growth, the index demonstrates a consistent pattern over time, while during the active stage, the index may exhibit abnormal fluctuations or even jumps. This indicates that the index can reveal spatio-temporal information about urban evolution that cannot be directly observed through multifractal spectra alone. By integrating this index with multifractal spectra, we can more comprehensively characterize the evolutionary characteristics of urban spatial structure.

Keywords: dynamics; generalized correlation dimension; multifractal spectrum; spatio-temporal evolution; spatio-temporal variation; urban morphology.