Real-Time Monitoring of Grazing Cattle Using LORA-WAN Sensors to Improve Precision in Detecting Animal Welfare Implications via Daily Distance Walked Metrics

Animals (Basel). 2023 Aug 16;13(16):2641. doi: 10.3390/ani13162641.

Abstract

Animal welfare monitoring relies on sensor accuracy for detecting changes in animal well-being. We compared the distance calculations based on global positioning system (GPS) data alone or combined with motion data from triaxial accelerometers. The assessment involved static trackers placed outdoors or indoors vs. trackers mounted on cows grazing on pasture. Trackers communicated motion data at 1 min intervals and GPS positions at 15 min intervals for seven days. Daily distance walked was determined using the following: (1) raw GPS data (RawDist), (2) data with erroneous GPS locations removed (CorrectedDist), or (3) data with erroneous GPS locations removed, combined with the exclusion of GPS data associated with no motion reading (CorrectedDist_Act). Distances were analyzed via one-way ANOVA to compare the effects of tracker placement (Indoor, Outdoor, or Animal). No difference was detected between the tracker placement for RawDist. The computation of CorrectedDist differed between the tracker placements. However, due to the random error of GPS measurements, CorrectedDist for Indoor static trackers differed from zero. The walking distance calculated by CorrectedDist_Act differed between the tracker placements, with distances for static trackers not differing from zero. The fusion of GPS and accelerometer data better detected animal welfare implications related to immobility in grazing cattle.

Keywords: internet of things; long range wide area network; precision livestock farming; precision livestock ranching.