Gestational Age-Dependent Regulation of Transthyretin in Mice during Pregnancy

Biology (Basel). 2023 Jul 26;12(8):1048. doi: 10.3390/biology12081048.

Abstract

Our prior studies have shown that protein misfolding and aggregation in the placenta are linked to the development of preeclampsia, a severe pregnancy complication. We identified transthyretin (TTR) as a key component of the aggregated protein complex. However, the regulation of native TTR in normal pregnancy remains unclear. In this study, we found that pregnant mice exhibited a remarkable and progressive decline in serum TTR levels through gestational day (gd) 12-14, followed by an increase in late pregnancy and postpartum. Meanwhile, serum albumin levels showed a modest but statistically significant increase throughout gestation. TTR protein and mRNA levels in the liver, a primary source of circulating TTR, mirrored the changes observed in serum TTR levels during gestation. Intriguingly, a similar pattern of TTR alteration was also observed in the serum of pregnant women and pregnant interleukin-10-knockout (IL-10-/-) mice with high inflammation background. In non-pregnant IL-10-/- mice, serum TTR levels were significantly lower than those in age-matched wild-type mice. Administration of IL-10 to non-pregnant IL-10-/- mice restored their serum TTR levels. Notably, dysregulation of TTR resulted in fewer implantation units, lower fetal weight, and smaller litter sizes in human TTR-overexpressing transgenic mice. Thus, TTR may play a pivotal role as a crucial regulator in normal pregnancy, and inflammation during pregnancy may contribute to the downregulation of serum TTR presence.

Keywords: IL-10; IL-10 knockout mice; liver; placenta; pregnancy; protein aggregation; transthyretin.