Ubiquitin Engineering for Interrogating the Ubiquitin-Proteasome System and Novel Therapeutic Strategies

Cells. 2023 Aug 21;12(16):2117. doi: 10.3390/cells12162117.

Abstract

Protein turnover, a highly regulated process governed by the ubiquitin-proteasome system (UPS), is essential for maintaining cellular homeostasis. Dysregulation of the UPS has been implicated in various diseases, including viral infections and cancer, making the proteins in the UPS attractive targets for therapeutic intervention. However, the functional and structural redundancies of UPS enzymes present challenges in identifying precise drug targets and achieving target selectivity. Consequently, only 26S proteasome inhibitors have successfully advanced to clinical use thus far. To overcome these obstacles, engineered peptides and proteins, particularly engineered ubiquitin, have emerged as promising alternatives. In this review, we examine the impact of engineered ubiquitin on UPS and non-UPS proteins, as well as on viral enzymes. Furthermore, we explore their potential to guide the development of small molecules targeting novel surfaces, thereby expanding the range of druggable targets.

Keywords: degradation; deubiquitinating enzymes (DUBs); ubiquitin; ubiquitin variants (UbVs); ubiquitin–proteasome system (UPS).

Publication types

  • Review
  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Cytoplasm
  • Proteasome Endopeptidase Complex*
  • Proteasome Inhibitors
  • Proteolysis
  • Ubiquitin*

Substances

  • Proteasome Endopeptidase Complex
  • Ubiquitin
  • Proteasome Inhibitors