Empagliflozin decreases ageing-associated arterial stiffening and vascular fibrosis under normoglycemic conditions

Vascul Pharmacol. 2023 Oct:152:107212. doi: 10.1016/j.vph.2023.107212. Epub 2023 Aug 22.

Abstract

Arterial stiffness is a hallmark of vascular ageing and results in increased blood flow pulsatility to the periphery, damaging end-organs such as the heart, kidneys and brain. Treating or "reversing" arterial stiffness has therefore become a central target in the field of vascular ageing. SGLT2 inhibitors, initially developed in the context of type 2 diabetes mellitus, have become a cornerstone of heart failure treatment. Additionally, effects on the vasculature have been reported. Here, we demonstrate that treatment with the SGLT2 inhibitor empagliflozin (7 weeks, 15 mg/kg/day) decreased ageing-induced arterial stiffness of the aorta in old mice with normal blood glucose levels. However, no universal mechanism was identified. While empagliflozin reduced the ageing-associated increase in collagen type I in the medial layer of the abdominal infrarenal aorta and decreased medial TGF-β deposition, this was not observed in the thoracic descending aorta. Moreover, empagliflozin was not able to prevent elastin fragmentation. In conclusion, empagliflozin decreased arterial stiffness in aged mice, indicating that SGLT2 inhibition could be a valuable strategy in mitigating vascular ageing. Further research is warranted to unravel the underlying, possibly region-specific, mechanisms.

Keywords: Arterial stiffness; Biomechanics; Empagliflozin; Fibrosis; SGLT2; Vascular ageing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Animals
  • Aorta, Abdominal
  • Arteries
  • Diabetes Mellitus, Type 2* / drug therapy
  • Heart
  • Mice
  • Sodium-Glucose Transporter 2 Inhibitors* / pharmacology

Substances

  • empagliflozin
  • Sodium-Glucose Transporter 2 Inhibitors