Unravelling the impacts of sulfur dioxide on dioxin catalytic decomposition on V2O5/AC catalysts

Sci Total Environ. 2023 Nov 25:901:166462. doi: 10.1016/j.scitotenv.2023.166462. Epub 2023 Aug 21.

Abstract

Dioxins are high chlorine, toxic, and persistent organic pollutants that exert significant pressure on both human and the environment. From the analysis of current pollutant removal of the whole life cycle, such as integrated removal of NOx, SO2 and dioxins in a system, the dioxins oxidation activity as well as the distribution of oxidation products in the presence of SO2 are still a challenge. In this study, dibenzofuran (DBF) was regarded as a model dioxin compound, and V2O5/AC was used as a catalyst to investigate the impact of SO2 on degradation activity and the degradation path of DBF. Various characterization results showed that SO2 could promote the transformation of DBF to intermediates through a reaction with lattice oxygen and lower the apparent activated energy of DBF catalytic oxidation on V2O5/AC catalysts. The density functional theory (DFT) calculations confirmed that SO2 improved the oxidation ability of lattice oxygen on V2O5/AC. The ethyl hydrogen fumarate intermediate decreased and the small-molecule byproducts increased, providing further evidence that SO2 accelerates the degradation of DBF and its intermediates. However, the formation of VOSO4 would inevitably deteriorate the adsorption and oxidation abilities of V2O5/AC. A model is pioneered to describe the relationship between SO2 promotion and VOSO4 inhibition on DBF catalytic oxidation on a V2O5/AC catalyst. This study is expected to provide theoretical guidance for the collaborative abatement of multi-pollutants in flue gas.

Keywords: Byproducts distribution; Catalytic oxidation; Dioxins; SO(2); V(2)O(5)/AC.