Rational construction of graphitic carbon nitride composited Li-rich Mn-based oxide cathode materials toward high-performance Li-ion battery

J Colloid Interface Sci. 2023 Dec 15;652(Pt A):577-589. doi: 10.1016/j.jcis.2023.08.118. Epub 2023 Aug 20.

Abstract

Li-rich Mn-based oxides (LRMOs) are considered as one of the most-promising cathode materials for next generation Li-ion batteries (LIBs) because of their high energy density. Nevertheless, the intrinsic shortcomings, such as the low first coulomb efficiency, severe capacity/voltage fade, and poor rate performance seriously limit its commercial application in the future. In this work, we construct successfully g-C3N4 coating layer to modify Li1.2Mn0.54Ni0.13Co0.13O2 (LMNC) via a facile solution. The g-C3N4 layer can alleviate the side-reaction between electrolyte and LMNC materials, and improve electronic conduction of LMNC. In addition, the g-C3N4 layer can suppress the collapse of structure and improve cyclic stability of LMNC materials. Consequently, g-C3N4 (4 wt%)-coated LMNC sample shows the highest initial coulomb efficiency (78.5%), the highest capacity retention ratio (78.8%) and the slightest voltage decay (0.48 V) after 300 loops. Besides, it also can provide high reversible capacity of about 300 and 93 mAh g-1 at 0.1 and 10C, respectively. This work proposes a novel approach to achieve next-generation high-energy density cathode materials, and g-C3N4 (4 wt%)-coated LMNC shows an enormous potential as the cathode materials for next generation LIBs with excellent performance.

Keywords: Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O(2); Lithium-rich cobalt-free cathode; Rate performance; Reaction kinetics; g-C(3)N(4).