The far-reaching effects of genetic process in a keystone predator species, grey wolves

Sci Adv. 2023 Aug 25;9(34):eadc8724. doi: 10.1126/sciadv.adc8724. Epub 2023 Aug 23.

Abstract

Although detrimental genetic processes are known to adversely affect the viability of populations, little is known about how detrimental genetic processes in a keystone species can affect the functioning of ecosystems. Here, we assessed how changes in the genetic characteristics of a keystone predator, grey wolves, affected the ecosystem of Isle Royale National Park over two decades. Changes in the genetic characteristic of the wolf population associated with a genetic rescue event, followed by high levels of inbreeding, led to a rise and then fall in predation rates on moose, the primary prey of wolves and dominant mammalian herbivore in this system. Those changes in predation rate led to large fluctuations in moose abundance, which in turn affected browse rates on balsam fir, the dominant forage for moose during winter and an important boreal forest species. Thus, forest dynamics can be traced back to changes in the genetic characteristics of a predator population.

MeSH terms

  • Abies
  • Animals
  • Deer
  • Ecosystem*
  • Female
  • Forests
  • Male
  • Parks, Recreational
  • Predatory Behavior
  • Wolves* / genetics