Serum Caffeine Concentration at the Time of Traumatic Brain Injury and Its Long-Term Clinical Outcomes

J Neurotrauma. 2023 Nov;40(21-22):2386-2395. doi: 10.1089/neu.2023.0006. Epub 2023 Oct 12.

Abstract

Caffeine is one of the most widely consumed psychoactive drugs in the general population. It has a neuroprotective effect in degenerative neurological disorders; however, the association between caffeine and traumatic brain injury (TBI) outcomes is contradictory. The objective of this study was to evaluate the association between serum caffeine concentration at the time of injury and long-term functional outcomes of patients with TBI visiting the emergency department (ED). This was a prospective multi-center cohort study including adult patients with intracranial injury confirmed by radiological examination, who visited five participating EDs within 72 h after TBI. The main exposure was the serum caffeine level within 4 h after injury, and the study outcome was a favorable functional recovery at 6 months after injury. Multi-variable logistic regression analysis adjusted for potential confounders was performed to calculate adjusted odds ratios (AORs) with 95% confidence intervals (CIs). Among the 334 study participants, caffeine was not detected in 102 patients (30.5 %). In patients with identifiable caffeine level, serum caffeine level was categorized into tercile groups; low (0.01-0.58 μg/mL), intermediate (0.59-1.66 μg/mL), and high (1.67-10.00 μg/mL). The proportions of patients with a 6-month favorable functional recovery were 56.9% in the no-caffeine group, 79.2% in the low-caffeine group, 75.3% in the intermediate-caffeine group, and 66.7% in the high-caffeine group (p = 0.006). In multi-variable logistic regression analysis, the low- and intermediate-caffeine groups were significantly associated with a higher probability of 6-month favorable functional recovery compared with the no-caffeine group [AORs (95% CI): 2.82 (1.32-6.02) and 2.18 (1.06-4.47], respectively. This study showed a significant association between a serum caffeine concentration of 0.01 to 1.66 μg/mL and good functional recovery at 6 months after injury compared with the no-caffeine group of patients with TBI with intracranial injury. These results suggest the possibility of using serum caffeine level as a potential biomarker for TBI outcome prediction and of using caffeine as a therapeutic agent in the clinical care of patients with TBI.

Keywords: biomarker; caffeine; traumatic brain injury.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Brain Injuries, Traumatic* / drug therapy
  • Caffeine*
  • Cohort Studies
  • Humans
  • Prognosis
  • Prospective Studies

Substances

  • Caffeine