The relationship between longer leukocyte telomeres and dNCR in non-cardiac surgery patients: a retrospective analysis

BMC Anesthesiol. 2023 Aug 22;23(1):284. doi: 10.1186/s12871-023-02183-0.

Abstract

Background: Cognitive decline following surgery is a common concern among elderly individuals. Leukocyte telomere length (LTL) can be assessed as a biological clock connected to an individual lifespan. However, the mechanisms causing this inference are still not fully understood. As a result of this, LTL has the potential to be useful as an aging-related biomarker for assessing delayed neurocognitive recovery (dNCR) and related diseases.

Methods: For this study, 196 individuals over 60 who were scheduled due to major non-cardiac surgical operations attended neuropsychological testing before surgery, followed by additional testing one week later. The finding of dNCR was based on a measured Z-score ≤ -1.96 on two or more separate tests. The frequency of dNCR was presented as the primary outcome of the study. Secondly, we evaluated the association between dNCR and preoperative LTL.

Results: Overall, 20.4% [40/196; 95% confidence interval (CI), 14.7-26.1%] of patients exhibited dNCR 1-week post-surgery. Longer LTL was identified as a predictor for the onset of early cognitive impairment resulting in postoperative cognitive decline [odds ratio (OR), 14.82; 95% CI, 4.01-54.84; P < 0.001], following adjustment of age (OR, 12.33; 95% CI, 3.29-46.24; P < 0.001). The dNCR incidence based on LTL values of these patients, the area under the receiver operating characteristic (ROC) curve was 0.79 (95% CI, 0.722-0.859; P < 0.001). At an optimal cut-off value of 0.959, LTL values offered respective specificity and sensitivity values of 64.7% and 87.5%.

Conclusions: In summary, the current study revealed that the incidence of dNCR was strongly associated with prolonged LTL. Furthermore, this biomarker could help identify high-risk patients and offer insight into the pathophysiology of dNCR.

Keywords: Aging; Delayed neurocognitive recovery; Telomere length.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aging*
  • Cognitive Dysfunction*
  • Humans
  • Leukocytes
  • Retrospective Studies
  • Telomere