Gut bacterial population and community dynamics following adult emergence in pest tephritid fruit flies

Sci Rep. 2023 Aug 22;13(1):13723. doi: 10.1038/s41598-023-40562-2.

Abstract

Gut microbiota are important contributors to insect success. Host-microbe interactions are dynamic and can change as hosts age and/or encounter different environments. A turning point in these relationships the transition from immature to adult life stages, particularly for holometabolous insects where there is radical restructuring of the gut. Improved knowledge of population and community dynamics of gut microbiomes upon adult emergence inform drivers of community assembly and physiological aspects of host-microbe interactions. Here, we evaluated the bacterial communities of the pest tephritid species melon fly (Zeugodacus cucurbitae) and Medditeranean fruit fly (medfly, Ceratitis capitata) associated with the pupae life stage and timepoints immediately following adult eclosion. We used a combination of culturing to determine cultivatable bacterial titers, qPCR to determine 16S-rRNA SSU copy numbers, and 16S V4 sequencing to determine changes in communities. Both culturing and qPCR revealed that fly bacterial populations declined upon adult emergence by 10 to 100-fold followed by recovery within 24 h following eclosion. Titers reached ~ 107 CFUs (~ 108 16S rRNA copies) within a week post-emergence. We also observed concurrent changes in amplicon sequence variance (ASVs), where the ASV composition differed overtime for both melon fly and medfly adults at different timepoints. Medfly, in particular, had different microbiome compositions at each timepoint, indicating greater levels of variation before stabilization. These results demonstrate that tephritid microbiomes experience a period of flux following adult emergence, where both biomass and the makeup of the community undergoes dramatic shifts. The host-microbe dynamics we document suggest plasticity in the community and that there may be specific periods where the tephritid gut microbiome may be pliable to introduce and establish new microbial strains in the host.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biomass
  • Ceratitis capitata*
  • Drosophila
  • Gastrointestinal Microbiome*
  • RNA, Ribosomal, 16S / genetics
  • Tephritidae*

Substances

  • RNA, Ribosomal, 16S