A double-well potential model for glass transition in a glassy hydrogel undergoing bi-stable interactions with water

Soft Matter. 2023 Aug 30;19(34):6612-6618. doi: 10.1039/d3sm00775h.

Abstract

The key mechanisms for achieving ultra-high mechanical properties of glassy hydrogels have not been fully understood, and it is commonly believed that their glass transitions are the crucial reasons due to the existence of significant bi-stable interactions between polymer macromolecules and water molecules. In this study, a double-well potential model is formulated to describe the mechanical properties of glassy hydrogels undergoing glass transition, by combining phase evolution theory and a rubber elasticity model. Bi-stable interactions between polymer macromolecules and water molecules (for both the trapped and free water) have been characterized using this double-well potential model, and various parameters are studied, including depth of well (for elasticity), distance between two wells (for yielding), and energy difference between two wells (for transition probability). Furthermore, constitutive stress-strain relationships are developed to explore the working principles for achieving ultra-high mechanical properties of these glassy hydrogels. Finally, the effectiveness of the proposed models is verified using finite element analysis (FEA) and also the experimental results reported in the literature, thus providing physical and mechanical insights into the ultra-high mechanical properties of glassy hydrogels.