Sugar composition and transcriptome analysis in developing 'Fengtang' plum (Prunus salicina Lindl.) reveal candidate genes regulating sugar accumulation

Plant Physiol Biochem. 2023 Sep:202:107955. doi: 10.1016/j.plaphy.2023.107955. Epub 2023 Aug 11.

Abstract

Sweetness is an important attribute of fruit quality, which directly affects consumers' preference for fresh fruit and is mostly determined by carbohydrate composition. 'Fengtang' plum (Prunus salicina Lindl.) is recognized for its high soluble sugar content, but the sugar composition and the molecular mechanisms underlying sugar overproduction are not fully understood. In this work, the sugar components were analyzed using gas chromatography-mass spectrometry combined with transcription profiles from RNA-sequencing and Quantitative Real-time PCR during fruit development. The target metabolic group showed that sucrose was the dominant sugar component in mature fruit, followed by glucose, fructose, and sorbitol. Based on the transcriptome data and qRT-PCR validation, we identified 12 key structural genes that significantly responded to corresponding component accumulation: sucrose synthase (PsSUS4), sucrose phosphate synthase (PsSPS2), neutral invertase (PsNINV1/3/4), phosphoglucomutase (PsPGM1), UTP-glucose-1-phosphate uridylyl transferase (PsUGP1/2), hexose kinase (PsHXK1/3), sugar transport protein (PsSTP1), and Sugars Will Eventually be Exported Transporter (PsSWEET4). In which PsSUS4 and PsSPS2, whose encoding proteins immediately catalyze sucrose synthesis, were selected to be silenced using the virus-induced gene silencing technology. Silencing of PsSUS4 or PsSPS2 resulted in decreased sucrose content by 27.6% and 8%, respectively, compared with the control, verifying their important roles in sucrose accumulation. Subsequently, sugar metabolism networks in this high-sugar plum were constructed with 12 key structural genes, 72 putative transcription factors, and 4 major sugar components. These results might facilitate a better understanding of the molecular mechanisms of sugar accumulation in 'Fengtang' plum and provide a framework for future fruit quality improvement.

Keywords: Fruit; Metabolome; Soluble sugar; Transcriptome; ‘Fengtang’ plum.

MeSH terms

  • Gene Expression Profiling
  • Glucose
  • Prunus domestica* / genetics
  • Sucrose
  • Sugars*

Substances

  • Sugars
  • Glucose
  • Sucrose