CACTUS: a computational framework for generating realistic white matter microstructure substrates

Front Neuroinform. 2023 Aug 1:17:1208073. doi: 10.3389/fninf.2023.1208073. eCollection 2023.

Abstract

Monte-Carlo diffusion simulations are a powerful tool for validating tissue microstructure models by generating synthetic diffusion-weighted magnetic resonance images (DW-MRI) in controlled environments. This is fundamental for understanding the link between micrometre-scale tissue properties and DW-MRI signals measured at the millimetre-scale, optimizing acquisition protocols to target microstructure properties of interest, and exploring the robustness and accuracy of estimation methods. However, accurate simulations require substrates that reflect the main microstructural features of the studied tissue. To address this challenge, we introduce a novel computational workflow, CACTUS (Computational Axonal Configurator for Tailored and Ultradense Substrates), for generating synthetic white matter substrates. Our approach allows constructing substrates with higher packing density than existing methods, up to 95% intra-axonal volume fraction, and larger voxel sizes of up to 500μm3 with rich fibre complexity. CACTUS generates bundles with angular dispersion, bundle crossings, and variations along the fibres of their inner and outer radii and g-ratio. We achieve this by introducing a novel global cost function and a fibre radial growth approach that allows substrates to match predefined targeted characteristics and mirror those reported in histological studies. CACTUS improves the development of complex synthetic substrates, paving the way for future applications in microstructure imaging.

Keywords: Monte-Carlo simulations; brain imaging; diffusion MRI; high packing density; microstructure imaging; numerical phantom; synthetic substrates; white matter.

Grants and funding

This work was supported by the Swiss National Science Foundation under grants 205320_175974 and 205320_204097. EC-R was supported by the Swiss National Science Foundation (Ambizione grant: PZ00P2_185814). Open access was funded by the École Polytechnique Fédérale de Lausanne.