Derivation of dose constraint for the general public around nuclear power plants with operational data of radioactive effluent releases

Appl Radiat Isot. 2023 Oct:200:110985. doi: 10.1016/j.apradiso.2023.110985. Epub 2023 Aug 16.

Abstract

For radiation protection optimization, ICRP proposed dose constraint as quantitative value for planned exposure situation based on representative person concept. The objective of this study is to derive dose constraints for the general public around nuclear power plants in Korea by applying representative person concept. The dose constraints for the general public around NPPs were derived through a total of six steps. The steps consisted of setting source terms, setting exposure pathways and scenarios, setting candidate groups for a critical group decision, setting habit data, calculating radiation doses, and proposing dose constraints. Through these steps, the radiation dose distribution of the general public around the NPPs was obtained, and dose constraints were proposed using the dose distribution. Radiation doses to the general public around all the Korea NPP sites ranged 1.63 × 10-2 to 1.32 × 10-1 mSv/y. Using the dose distribution, 0.15 mSv/y, 0.10 mSv/y, and 0.08 mSv/y were proposed as dose constraints. The dose constraint values derived in this study are proposals. Therefore, it is judged that the dose constraints should need furthermore discussion with regulators, licensees, and radiation protection experts considering societal and economic factors for radiation protection. The proposal for dose constraints developed in this study can be used to optimize radiation protection for the general public around the NPPs.

Keywords: Dose constraints; General public exposure; Nuclear power plant; Radiation protection optimization; Representative person.