Pollution characteristics, sources, and photochemical roles of ambient carbonyl compounds in summer of Beijing, China

Environ Pollut. 2023 Nov 1:336:122403. doi: 10.1016/j.envpol.2023.122403. Epub 2023 Aug 16.

Abstract

Ambient carbonyls are important precursors of radicals and ground-level ozone (O3). In this study, sources, precursors, and impacts on radicals and O3 of carbonyls were investigated based on online observations of volatile organic compounds (VOCs) at an urban site in Beijing during June 2021. Carbonyls accounted for 36% and 42% of mixing ratios and OH reactivity for total measured VOCs, respectively. Formaldehyde was the most abundant carbonyl, with the mean level of 4.13 ± 2.28 ppb. Source apportionment results based on the multi linear regression (MLR) method suggested that secondary production contributed 41%, 25%, 36%, and 30% of formaldehyde, acetaldehyde, propanal, and acetone, respectively. Key precursors of carbonyls were then identified based on the calculation of their production rates. It was found that alkenes contributed 59%-80% of aldehydes production. Impacts of carbonyls on HOx radicals (OH and HO2) and O3 production were explored using a box model based on observations (OBM). Photolysis of HONO, formaldehyde, and O3 were the dominant primary sources of HOx radicals during daytime of O3 pollution days, with average relative contributions of 52%, 28%, and 19% to the total primary production rate of HOx, respectively. Aldehydes accounted for 32% (20% from formaldehyde) of average HOx removal rates. The relative incremental reactivity (RIR) values of NOx determined by the OBM were negative, suggesting that the O3-VOCs-NOx sensitivity was in the VOCs-limited regime. Using the observed concentrations of carbonyls as constraints of OBM, the absolute values of RIR for NOx tended to increase but those for anthropogenic VOCs tended to decrease. Formaldehyde showed the largest RIR value for anthropogenic VOCs during O3 pollution days. These findings indicated the important impacts of carbonyls on O3 production and O3-VOCs-NOx sensitivity.

Keywords: Beijing; Carbonyl compounds; HO(x) radicals; Ozone; Sources.

MeSH terms

  • Air Pollutants* / analysis
  • Aldehydes
  • Beijing
  • China
  • Environmental Monitoring / methods
  • Formaldehyde / analysis
  • Ozone* / analysis
  • Volatile Organic Compounds* / analysis

Substances

  • Air Pollutants
  • Aldehydes
  • Ozone
  • Volatile Organic Compounds
  • Formaldehyde