Functional reserve and contractile phenotype of atrial myocardium from patients with atrial remodeling without and with atrial fibrillation

Am J Physiol Heart Circ Physiol. 2023 Oct 1;325(4):H729-H738. doi: 10.1152/ajpheart.00355.2023. Epub 2023 Aug 18.

Abstract

Atrial contractility and functional reserve in atrial remodeling (AR) without (AR/-AF) or with atrial fibrillation (AR/+AF) are not well characterized. In this study, functional measurements were performed in right atrial muscle strips (n = 71) obtained from patients (N = 22) undergoing routine cardiac surgery with either no AR [left atrial (LA) diameter < 40 mm and no history of AF (hAF)], AR/-AF (LA diameter ≥ 40 mm, no hAF), or AR/+AF (hAF and LA diameter ≥ 40 mm or LAEF < 45%). AR/-AF and AR/+AF were associated with a prolongation of half-time-to-peak (HTTP, P < 0.001) and time-to-peak (TTP) contraction (P < 0.01) when compared with no AR. This effect was seen at baseline and during β-adrenergic stimulation with isoproterenol (Iso). Early relaxation assessed by half-relaxation time (HRT) was prolonged in AR/-AF (P = 0.03) but not in AR/+AF when compared with no AR at baseline, but this delay in relaxation in AR/-AF was attenuated with Iso. Late relaxation (τ) did not differ between AR/-AF and no AR but was consistently shorter in AR/+AF than no AR before (P = 0.04) and during Iso (P = 0.01), indicating accelerated late relaxation in AR/+AF. Relative force increase during Iso was higher (P = 0.01) and more dispersed (P = 0.047) in patients with AR/+AF. Relative adrenergic response was unaltered in the myocardium of patients with AR/-AF and AR/+AF. In conclusion, AR/-AF and AR/+AF are associated with changes in myocardial inotropic reserve and contractility. The changes are particularly pronounced in patients with AR/+AF, suggesting that the progression from AR/-AF to AR/+AF is associated with progressive alterations in atrial function that may contribute to arrhythmogenesis.NEW & NOTEWORTHY Mechanical alterations in atrial remodeling without (AR/-AF) and with atrial fibrillation (AR/+AF) have not been studied in detail in human atrial tissue preparations. To our knowledge, this is the first study to compare the mechanical phenotype and inotropic reserve in human atrial myocardial preparations from patients with no atrial remodeling, AR/-AF, and AR/+AF. We identify specific patterns of contractile dysfunction and heterogeneity for both, AR/-AF and AR/+AF, indicating the progression of atrial disease.

Keywords: atrial contractility; atrial dilation; atrial dysfunction; atrial fibrillation; atrial remodeling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adrenergic Agents
  • Atrial Fibrillation*
  • Atrial Remodeling*
  • Heart Atria
  • Humans
  • Isoproterenol / pharmacology
  • Myocardium
  • Phenotype

Substances

  • Isoproterenol
  • Adrenergic Agents