Heterochromatic silencing of immune-related genes in glia is required for BBB integrity and normal lifespan in drosophila

Aging Cell. 2023 Oct;22(10):e13947. doi: 10.1111/acel.13947. Epub 2023 Aug 18.

Abstract

Glia and neurons face different challenges in aging and may engage different mechanisms to maintain their morphology and functionality. Here, we report that adult-onset downregulation of a Drosophila gene CG32529/GLAD led to shortened lifespan and age-dependent brain degeneration. This regulation exhibited cell type and subtype-specificity, involving mainly surface glia (comprising the BBB) and cortex glia (wrapping neuronal soma) in flies. In accordance, pan-glial knockdown of GLAD disrupted BBB integrity and the glial meshwork. GLAD expression in fly heads decreased with age, and the RNA-seq analysis revealed that the most affected transcriptional changes by RNAi-GLAD were associated with upregulation of immune-related genes. Furthermore, we conducted a series of lifespan rescue experiments and the results indicated that the profound upregulation of immune and related pathways was not the consequence but cause of the degenerative phenotypes of the RNAi-GLAD flies. Finally, we showed that GLAD encoded a heterochromatin-associating protein that bound to the promoters of an array of immune-related genes and kept them silenced during the cell cycle. Together, our findings demonstrate a previously unappreciated role of heterochromatic gene silencing in repressing immunity in fly glia, which is required for maintaining BBB and brain integrity as well as normal lifespan.

Keywords: IMD pathway; aging; antimicrobial peptides; blood-brain barrier; gene silencing; glia; heterochromatin; innate immunity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Drosophila Proteins* / genetics
  • Drosophila Proteins* / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Drosophila* / genetics
  • Drosophila* / metabolism
  • Longevity / genetics
  • Neuroglia / metabolism

Substances

  • Drosophila Proteins