Protein components of maple syrup as a potential resource for the development of novel anti‑colorectal cancer drugs

Oncol Rep. 2023 Oct;50(4):179. doi: 10.3892/or.2023.8616. Epub 2023 Aug 18.

Abstract

Maple syrup is a natural sweetener consumed worldwide. Active ingredients of maple syrup possess antitumor effects; however, these ingredients are phenolic compounds. The present study aimed to investigate components other than phenolic compounds that may have antitumor effects against colorectal cancer (CRC). Cell proliferation assays demonstrated that treatment with the more than 10,000 molecular weight fraction significantly inhibited viability in DLD‑1 cells. Therefore, we hypothesized that the protein components of maple syrup may be the active ingredients in maple syrup. We obtained protein components from maple syrup by ammonium sulfate precipitation, and treatment with the protein fraction of maple syrup (MSpf) was found to exhibit a potential antitumor effect. MSpf‑treated DLD‑1 colon adenocarcinoma cells exhibited significantly decreased proliferation, migration and invasion. In addition, upregulation of LC3A and E‑cadherin and downregulation of MMP‑9 expression levels were observed following MSpf treatment. Investigation of the components of MSpf suggested that it was primarily formed of advanced glycation end products (AGEs). Therefore, whether AGEs in MSpf affected the STAT3 pathway through the binding to its receptor, receptor of AGE (RAGE), was assessed. MSpf treatment was associated with decreased RAGE expression and STAT3 phosphorylation. Finally, to determine whether autophagy contributed to the inhibitory effect of cell proliferation following MSpf treatment, the effect of MSpf treatment on autophagy induction following bafilomycin A1 treatment, a specific autophagy inhibitor, was assessed. The inhibitory effect of MSpf treatment on cell proliferation was enhanced through the inhibition of autophagy by bafilomycin A1 treatment. These results suggested that AGEs in MSpf suppressed cell proliferation and epithelial‑mesenchymal transition through inhibition of the STAT3 signaling pathway through decreased RAGE expression. Therefore, AGEs in MSpf may be potential compounds for the development of antitumor drugs for the treatment of CRC with fewer adverse effects compared with existing antitumor drugs.

Keywords: AGE; EMT; STAT3; autophagy; colorectal cancer; maple syrup; receptor for AGE.

MeSH terms

  • Acer*
  • Adenocarcinoma*
  • Colonic Neoplasms*
  • Glycation End Products, Advanced
  • Humans

Substances

  • bafilomycin A1
  • Glycation End Products, Advanced

Grants and funding

Funding: No funding was received.