Acute toxicity, anti-diabetic, and anti-cancerous potential of Trillium govanianum-conjugated silver nanoparticles in Balb/c mice

Curr Pharm Biotechnol. 2023 Aug 18. doi: 10.2174/1389201024666230818124025. Online ahead of print.

Abstract

Background: The current study aimed to develop an economic plant-based therapeutic agent to improve the treatment strategies for diseases at the nano-scale because Cancer and Diabetes mellitus are major concerns in developing countries. Therefore, in vitro and in vivo anti-diabetic and anti-cancerous activities of Trillium govanianum conjugated silver nanoparticles were assessed.

Methods: In the current study synthesis of silver nanoparticles using Trillium govanianum and characterization were done using a scanning electron microscope, UV-visible spectrophotometer, and FTIR analysis. The in vitro and in vivo anti-diabetic and anti-cancerous potential (200 mg/kg and 400 mg/kg) were carried out.

Results: It was discovered that Balb/c mice did not show any major alterations during observation of acute oral toxicity when administered orally both TGaqu (1000 mg/kg) and TGAgNPs (1000 mg/kg), and results revealed that 1000 mg/kg is not lethal dose as did not find any abnormalities in epidermal and dermal layers when exposed to TGAgNPs. In vitro studies showed that TGAgNPs could not only inhibit alpha-glucosidase and protein kinases but were also potent against the brine shrimp. Though, a significant reduction in blood glucose levels and significant anti-cancerous effects was recorded when alloxan-treated and CCl4-induced mice were treated with TGAgNPs and TGaqu.

Conclusion: Both in vivo and in vitro studies revealed that TGaqu and TGAgNPs are not toxic at 200 mg/kg, 400 mg/kg, and 1000 mg/kg doses and possess strong anti-diabetic and anti-cancerous effects due to the presence of phyto-constituents. Further, suggesting that green synthesized silver nanoparticles could be used in pharmaceutical industries to develop potent therapeutic agents.

Keywords: Antidiabetic activity; Balb/c mice; Histopathology; Trillium govanianum; anti-cancerous activity; silver nanoparticles.