Oxidized and Reduced Dimeric Protein Complexes Illustrate Contrasting CID and SID Charge Partitioning

J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2166-2175. doi: 10.1021/jasms.3c00142. Epub 2023 Aug 17.

Abstract

Charge partitioning during the dissociation of protein complexes in the gas phase is influenced by many factors, such as interfacial interactions, protein flexibility, protein conformation, and dissociation methods. In the present work, two cysteine-containing homodimer proteins, β-lactoglobulin and α-lactalbumin, with the disulfide bonds intact and reduced, were used to gain insight into the charge partitioning behaviors of collision-induced dissociation (CID) and surface-induced dissociation (SID) processes. For these proteins, we find that restructuring dominates with CID and dissociation with symmetric charge partitioning dominates with SID, regardless of whether intramolecular disulfide bonds are oxidized or reduced. CID of the charge-reduced dimeric protein complex leads to a precursor with a slightly smaller collision cross section (CCS), greater stability, and more symmetrically distributed charges than the significantly expanded form produced by CID of the higher charged dimer. Collision-induced unfolding plots demonstrate that the unfolding-restructuring of the protein complexes initiates the charge migration of higher charge-state precursors. Overall, gas collisions reveal the charge-dependent restructuring/unfolding properties of the protein precursor, while surface collisions lead predominantly to more charge-symmetric monomer separation. CID's multiple low-energy collisions sequentially reorganize intra- and intermolecular bonds, while SID's large-step energy jump cleaves intermolecular interfacial bonds in preference to reorganizing intramolecular bonds. The activated population of precursors that have taken on energy without dissociating (populated in CID over a wide range of collision energies, populated in SID for only a narrow distribution of collision energies near the onset of dissociation) is expected to be restructured, regardless of the activation method.

MeSH terms

  • Animals
  • Cattle
  • Disulfides / chemistry
  • Lactalbumin* / chemistry
  • Lactoglobulins* / chemistry
  • Mass Spectrometry / methods
  • Oxidation-Reduction*
  • Protein Conformation
  • Protein Multimerization