Interface Engineering Induced Electron Redistribution at PtNs /NiTe-Ns Interfaces for Promoting pH-Universal and Chloride-Tolerant Hydrogen Evolution Reaction

Small. 2023 Dec;19(49):e2303974. doi: 10.1002/smll.202303974. Epub 2023 Aug 17.

Abstract

Exploring highly efficient hydrogen evolution reaction (HER) electrocatalysts for large-scale water electrolysis in the full potential of hydrogen (pH) range is highly desirable, but it remains a significant challenge. Herein, a simple pathway is proposed to synthesize a hybrid electrocatalyst by decorating small metallic platinum (Pt) nanosheets on a large nickel telluride nanosheet (termed as PtNs /NiTe-Ns). The as-prepared PtNs /NiTe-Ns catalyst only requires overpotentials of 72, 162, and 65 mV to reach a high current density of 200 mA cm-2 in alkaline, neutral and acidic conditions, respectively. Theoretical calculations reveal that the combination of metallic Pt and NiTe-Ns subtly modulates the electronic redistribution at their interface, improves the charge-transfer kinetics, and enhances the performance of Ni active sites. The synergy between the Pt site and activated Ni site near the interface in PtNs /NiTe-Ns promotes the sluggish water-dissociation kinetics and optimizes the subsequent oxyhydrogen/hydrogen intermediates (OH*/H*) adsorption, accelerating the HER process. Additionally, the superhydrophilicity and superaerophobicity of PtNs /NiTe-Ns facilitate the mass transfer process and ensure the rapid desorption of generated bubbles, significantly enhancing overall alkaline water/saline water/seawater electrolysis catalytic activity and stability.

Keywords: Pt/NiTe-Ns heterogeneous catalysts; interface engineering, pH-universal hydrogen evolution reaction; intermediates adsorption modulation; overall water splitting.