Persistence of a Delocalized Radical in Larger Clusters of Hydrated Copper(II) Hydroxide, CuOH+(H2O)3-7

J Phys Chem A. 2023 Aug 17;127(32):6647-6659. doi: 10.1021/acs.jpca.3c03718. Epub 2023 Jul 17.

Abstract

The structures, vibrational spectra, and electronic properties of copper hydroxide hydrates CuOH+(H2O)3-7 were investigated with quantum chemistry computations. As a follow-up to a previous analysis of CuOH+(H2O)0-2, this investigation examined the progression as the square-planar metal coordination environment was filled and as solvation shells expanded. Four-, five-, and six-coordinate structures were found to be low-energy isomers. The delocalized radical character, which was discovered in the small clusters, was found to persist upon continued hydration, although the hydrogen-bonded water network in the larger clusters was found to play a more significant role in accommodating this spin. Partial charges indicated that the electronic structure includes more Cu2+···OH- character than was observed in smaller clusters, but this structure remains decidedly mixed with Cu+···OH· configurations and yields roughly half-oxidation of the water network in the absence of any electrochemical potential. Computed vibrational spectra for n = 3 showed congruence with spectra from recent predissociation spectroscopy experiments, provided that the role of the D2 tag was taken into account. Spectra for n = 4-7 were predicted to exhibit features that are reflective of both the mixed electronic character and proton-/hydrogen-shuttling motifs within the hydrogen-bonded water network.