Direct photocatalytic patterning of colloidal emissive nanomaterials

Sci Adv. 2023 Aug 18;9(33):eadi6950. doi: 10.1126/sciadv.adi6950. Epub 2023 Aug 16.

Abstract

We present a universal direct photocatalytic patterning method that can completely preserve the optical properties of perovskite nanocrystals (PeNCs) and other emissive nanomaterials. Solubility change of PeNCs is achieved mainly by a photoinduced thiol-ene click reaction between specially tailored surface ligands and a dual-role photocatalytic reagent, pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), where the thiol-ene reaction is enabled at a low light intensity dose (~ 30 millijoules per square centimeter) by the strong photocatalytic activity of PeNCs. The photochemical reaction mechanism was investigated using various analyses at each patterning step. The PTMP also acts as a defect passivation agent for the PeNCs and even enhances their photoluminescence quantum yield (by ~5%) and photostability. Multicolor patterns of cesium lead halide (CsPbX3)PeNCs were fabricated with high resolution (<1 micrometer). Our method is widely applicable to other classes of nanomaterials including colloidal cadmium selenide-based and indium phosphide-based quantum dots and light-emitting polymers; this generality provides a nondestructive and simple way to pattern various functional materials and devices.