Developing functional relationships between waterlogging and cotton growth and physiology-towards waterlogging modeling

Front Plant Sci. 2023 Jul 31:14:1174682. doi: 10.3389/fpls.2023.1174682. eCollection 2023.

Abstract

Cotton crop is known to be poorly adapted to waterlogging, especially during the early growth stages. Developing functional relationships between crop growth and development parameters and the duration of waterlogging is essential to develop or improve existing cotton crop models for simulating the impact of waterlogging. However, there are only limited experimental studies conducted on cotton specifically aimed at developing the necessary functional relationships required for waterlogging modeling. Further research is needed to understand the effects of waterlogging on cotton crops and improve modeling capabilities in this area. The current study aimed to conduct waterlogging experiments and develop functional relationships between waterlogging and cotton growth and physiology. The experiments were conducted in pots, and the waterlogging was initiated by plugging the drain hole at the bottom of the pot using a wooden peg. In the experiments, eight waterlogging treatments, including the control treatment, were imposed at the vegetative growth stage (15 days after sowing). Control treatment had zero days of water-logged condition; other treatments had 2, 4, 6, 8, 10, 12, and 14 days of waterlogging. It took five days to reach zero oxygen levels and one to two days to return to control after the treatment. After a total treatment duration of 14 days (30 days after sowing), the growth, physiological, reproductive, and nutrient analysis was conducted. All physiological parameters decreased with the number of days of waterlogging. Flavonoid and anthocyanin index increased with increased duration of waterlogging. Photosynthesis and whole plant dry weight in continuously waterlogged conditions were 75% and 78% less compared to 0, and 2-day water-logged plants. Plant height, stem diameter, number of main stem leaves, leaf area, and leaf length also decreased with waterlogging duration. When waterlogging duration increased, leaf, stem, and root macronutrients decreased, while micronutrients showed mixed trends. Based on the experimental study, functional relationships (linear, quadratic, and exponential decay) and waterlogging stress response indices are developed between growth and development parameters and the duration of waterlogging. This can serve as a base for developing or improving process-based cotton models to simulate the impact of waterlogging.

Keywords: cotton; functional relationships; morphology; plant physiology; process-based models; waterlogging; waterlogging stress response index.