Magnetic biopolymers' nanocomposites from chitosan, lignin and phycosynthesized iron nanoparticles to remediate water from polluting oil

Int J Biol Macromol. 2023 Aug 12:251:126318. doi: 10.1016/j.ijbiomac.2023.126318. Online ahead of print.

Abstract

Targeting the remediation of oil pollution in water, the construction of super magnetic adsorbent nanocomposites (NCs) was achieved using the nanoparticles of chitosan (Cht), lignin (Lg) and phycosynthesized iron nanoparticles (Fe MNPs) using Gelidium amansii extract. The syntheses and conjugations of nanomaterials were authenticated via infrared spectral analysis and the structural physiognomies of them were appraised via electron microscopy and zeta analysis. The Lg NPs, Cht NPs, Fe MNPs and their composites (Lg/Cht MNCs) had mean particles' sizes of 42.3, 76.4, 14.2 and 108.3 nm, and were charged with - 32.7, + 41.2, + 28.4 and +37.5 mV, respectively. The magnetometer revealed the high magnetic properties of both Fe MNPs and Lg/Cht MNCs; the maximum swelling of Lg/Cht NPs (46.3 %), and Lg/Cht MNPs (33.8 %) was detected after 175 min. The diesel oil adsorption experiments with Lg/Cht MNPs, using batch adsorption practices, revealed the powerful potentiality of magnetic NCs to remove oil pollution in water; the maximum adsorption capacity (qt) was achieved with the conditions of pH = 7.5, adsorption period = 90 min and adsorbent dose = 200 mg/L. The magnetic Lg/Cht MNCs exhibited excellent recovery/reusability attributes for five adsorption cycles; the qt differences were negligible after the entire oil-adsorption cycles, with oil removal of >90 %. The innovative fabricated Lg/Cht MNCs could provide an effectual, sustainable and eco-friendly approach for the removal of pollutant oil in water resources.

Keywords: Adsorption conditions; Biopolymers; Bioremediation; Green synthesis; Nanoparticles.