A comparative study on the influence of single and combined ultrasounds assisted flake graphite flotation

Ultrason Sonochem. 2023 Oct:99:106551. doi: 10.1016/j.ultsonch.2023.106551. Epub 2023 Aug 7.

Abstract

Ultrasound has emerged as a promising technique for improving the mineral flotation performance. However, limited research exists regarding the influence of different ultrasound types on the flotation process. Specifically, the impact of combined ultrasound and the comparison of horn- and bath-type ultrasounds on flotation have not been fully investigated. To address this knowledge gap, a comprehensive study to explore the effects of different ultrasonic pretreatments on the flotation of flake graphite was conducted. A Box-Behnken design is employed to analyze the effects of combined ultrasound on graphite flotation. By characterizing the properties of graphite samples before and after the ultrasonic treatment, the aim is to elucidate the mechanism underlying the impact of ultrasound on graphite flotation. The experimental results indicated that the ultrasonic cavitation intensity exerted a significant influence on the graphite flotation recovery. Both horn- and bath- type ultrasounds contributed to flotation, but horn-type ultrasound demonstrated a more pronounced effect, leading to a 7% increase in flotation recovery, whereas bath-type ultrasound resulted in only a 2% increase. Furthermore, the cavitation intensity of combined ultrasound was found to be higher than that of single-frequency ultrasound in the same duration. However, the performance of graphite flotation was better with short duration combined ultrasound pretreatment, while the opposite trend was observed for a long duration ultrasound pretreatment. These findings may inform the development of more efficient and effective ultrasonic pretreatments for flotation separation processes.

Keywords: Cavitation intensity; Dual-frequency ultrasound; Graphite flotation; Parametric optimization; Ultrasonic bath; Ultrasonic horn.