Metagenomics reveals taxon-specific responses of soil nitrogen cycling under different fertilization regimes in heavy metal contaminated soil

J Environ Manage. 2023 Nov 1:345:118766. doi: 10.1016/j.jenvman.2023.118766. Epub 2023 Aug 14.

Abstract

Soil deficiency, cyclic erosion, and heavy metal pollution have led to fertility loss and ecological function decline in mining areas. Fertilization is an important way to rapidly replenish soil nutrients, which have a major influence on the soil nitrogen cycling process, but different fertilization regimes have different impacts on soil properties and microbial functional potentials. Here, metagenomic sequencing was used to investigate the different responses of key functional genes of microbial nitrogen cycling to fertilization regimes and explore the potential effects of soil physicochemical properties on the key functional genes. The results indicated that AC-HH (ammonium chloride-high frequency and concentration) treatment significantly increased the gene abundance of norC (13.40-fold), nirK (5.46-fold), and napA (5.37-fold). U-HH (urea-high frequency and concentration) treatment significantly increased the gene abundance of hao (6.24-fold), pmoA-amoA (4.32-fold) norC (7.00-fold), nosZ (3.69-fold), and nirK (6.88-fold). Functional genes were distributed differently among the 10 dominant phyla. The nifH and nifK genes were distributed only in Proteobacteria. The hao gene was distributed in Gemmatimonadetes, Nitrospirae and Proteobacteria. Fertilization regimes caused changes in functional redundancy in soil, and nirK and nirB, which are involved in denitrification, were present in different genera. Fertilization regimes with high frequency and high concentration were more likely to increase the gene abundance at the genus level. In summary, this study provides insights into the taxon-specific response of soil nitrogen cycling under different fertilization regimes, where changes in fertilization regimes affect microbial nitrogen cycling by altering soil physicochemical properties in a complex dynamic environment.

Keywords: Fertilization concentration; Fertilization frequency; Functional genes; Functional redundancy.

MeSH terms

  • Bacteria / genetics
  • Fertilization
  • Metagenomics*
  • Nitrogen
  • Soil Microbiology
  • Soil* / chemistry

Substances

  • Soil
  • Nitrogen