Updates on Biomaterials Used in Total Hip Arthroplasty (THA)

Polymers (Basel). 2023 Aug 2;15(15):3278. doi: 10.3390/polym15153278.

Abstract

One of the most popular and effective orthopedic surgical interventions for treating a variety of hip diseases is total hip arthroplasty. Despite being a radical procedure that involves replacing bone and cartilaginous surfaces with biomaterials, it produces excellent outcomes that significantly increase the patient's quality of life. Patient factors and surgical technique, as well as biomaterials, play a role in prosthetic survival, with aseptic loosening (one of the most common causes of total hip arthroplasty failure) being linked to the quality of biomaterials utilized. Over the years, various biomaterials have been developed to limit the amount of wear particles generated over time by friction between the prosthetic head (metal alloys or ceramic) and the insert fixed in the acetabular component (polyethylene or ceramic). An ideal biomaterial must be biocompatible, have a low coefficient of friction, be corrosion resistant, and have great mechanical power. Comprehensive knowledge regarding what causes hip arthroplasty failure, as well as improvements in biomaterial quality and surgical technique, will influence the survivability of the prosthetic implant. The purpose of this article was to assess the benefits and drawbacks of various biomaterial and friction couples used in total hip arthroplasties by reviewing the scientific literature published over the last 10 years.

Keywords: biomaterials; ceramic; metal; polyethylene; total hip arthroplasty.

Publication types

  • Review

Grants and funding

This research received no external funding.