Exploring Phytochemical Composition and In Vivo Anti-Inflammatory Potential of Grape Seed Oil from an Alternative Source after Traditional Fermentation Processes: Implications for Phytotherapy

Plants (Basel). 2023 Jul 28;12(15):2795. doi: 10.3390/plants12152795.

Abstract

This study aimed to analyze the composition of grape seed oil (GSO) derived from an alternative source after traditional fermentation processes and its potential anti-inflammatory effects using an in vivo model of carrageenan-induced inflammation in mice. Gas chromatography high-resolution electron ionization mass spectrometry (GC-HR-EIMS) analysis identified eight main components in the GSO extract, including myristic acid methyl ester, palmitoleic acid methyl ester, methyl isoheptadecanoate, cis-linoleic acid, oleic acid methyl ester, linoleic acid stereoisomer, linoleic acid ethyl ester, and methyl (6E, 9E, 12E, 15E)-docose-6,9,12,15-tetraenoate. No significant differences were observed in the main fatty acids between commercially available grape seed oil and GSO extract obtained from fermented grape seeds. In the carrageenan-induced inflammation model, treatment with GSO resulted in a significant reduction in paw edema at 180 min, as in the reduction observed with diclofenac treatment. Combined treatment with GSO and diclofenac showed enhanced anti-inflammatory effects. Additionally, GSO exhibited antioxidative effects by decreasing the levels of glutathione (GSH) and malondialdehyde (MDA) in the serum. Chronic treatment with GSO for ten days did not provide a protective effect on inflammation. These findings suggest that GSO could be used as an alternative raw material and could possess anti-inflammatory and antioxidative properties. Further studies are needed to explore its potential therapeutic applications.

Keywords: GC-HR-EIMS analysis; alternative source; anti-inflammatory effects; grape seed oil (GSO); in vivo.