Variation Pattern of the Elastic Modulus of Concrete under Combined Humidity and Heat Conditions

Materials (Basel). 2023 Aug 3;16(15):5447. doi: 10.3390/ma16155447.

Abstract

The coupling effect of moisture content and temperature on the elastic modulus of concrete is experimentally investigated. The elastic modulus of dry concrete exhibits a clear temperature-weakening effect, while the elastic modulus of wet concrete exhibits a water-strengthening effect at room temperature. Under humidity-heat conditions, the elastic modulus of wet concrete declines with the temperature rise. When the temperature is 20 °C, 200 °C, 400 °C, 520 °C, and 620 °C, the humidity-heat coupling factors of the elastic modulus change rate DI˙F with moisture content are 0.08, 0.07, 0.04, 0.01, and -0.03, respectively, and the declining rate increases with the rise of moisture content. The relation between the humidity-heat coupling factor DIF, moisture content, and temperature was established; The equivalent relation between the water-strengthening effect and the temperature-weakening effect of the elastic modulus was obtained. The temperature range of the strengthening effect and "apparent weakening effect" of water stored inside concrete before heating on elastic modulus was determined; The evolutionary mechanism of the competition between the microcrack expansion and healing of concrete under combined humidity and heat conditions was revealed.

Keywords: concrete elastic modulus; humidity–heat coupling factor; temperature effect; water effect.