Drop-Dry Deposition of SnO2 Using a Complexing Agent and Fabrication of Heterojunctions with Co3O4

Materials (Basel). 2023 Jul 27;16(15):5273. doi: 10.3390/ma16155273.

Abstract

The drop-dry deposition (DDD) is a simple chemical technique of thin film deposition, which can be applied to metal oxides. The deposition solution is an aqueous solution including a metal salt and an alkali. However, some metal ions react spontaneously with water and precipitate. This work is the first attempt to use complexing agents in DDD to suppress the precipitation. SnO2 thin films are fabricated using DDD with Na2S2O3 as a complexing agent and via annealing in air. The results of the Auger electron spectroscopy measurement show that the O/Sn composition ratio of the annealed films approached two, indicating that the annealed films are SnO2. The photoelectrochemical measurement results show that the annealed films are n-type. Co3O4/SnO2 heterojunction is fabricated using p-type Co3O4 films which are also deposited via DDD. The heterojunction has rectification and photovoltaic properties. Thus, for the first time, a metal oxide thin film was successfully prepared via DDD using a complexing agent, and oxide thin film solar cells are successfully prepared using only DDD.

Keywords: Co3O4; SnO2; drop-dry deposition; heterojunction.

Grants and funding

This research received no external funding.